## Logic gates explained

Use this handy guide to learn how logic gates work.



| Name           | Diagram  | Truth Table                               | Description                                                                                                                                                                                               |
|----------------|----------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AND            | х —      | x y F<br>0 0 0<br>0 1 0<br>1 0 0<br>1 1 1 | The AND gate requires signals from both inputs (x and y) to activate the output (F).                                                                                                                      |
| OR             | х F      | x y F<br>0 0 0<br>0 1 1<br>1 0 1<br>1 1 1 | The <b>OR</b> gate requires signals from <b>one or both</b> inputs (x <b>and or</b> y) to activate the output (F).                                                                                        |
| NOT            | х —      | x F<br>0 1<br>1 0                         | The <b>NOT</b> gate is an inverter. When it receives a signal from its input (x) it does not activate the output (F). When it <b>doesn't receive a signal</b> , it activates the output.                  |
| Advanced gates |          |                                           |                                                                                                                                                                                                           |
| NAND           | х —      | x y F<br>0 0 1<br>0 1 1<br>1 0 1<br>1 1 0 | The NAND gate is an inverter. When it receives a signal from either or neither input (x or y) it will activate the output (F). If it receives a signal from both it will not activate the output.         |
| NOR            | х F      | x y F<br>0 0 1<br>0 1 0<br>1 0 0<br>1 1 0 | The <b>NOR</b> gate is an inverter. When it receives a signal from <b>neither</b> input (x) it will activate the output (F). If it receives any signals from either or both inputs, it will not activate. |
| XOR            | х F      | X Y F 0 0 0 0 1 1 1 0 1 1 1 0             | The XOR gate is an exclusive gate, this means it will only activate the output (F) when it receives one signal from the chosen input (x)                                                                  |
| XNOR           | х<br>у F | x y F<br>0 0 1<br>0 1 0<br>1 0 0<br>1 1 1 | The XNOR gate is an exclusive gate, this means it will only activate the output (F) when <b>both</b> inputs provide a signal, or provide no signal.                                                       |